

The Influence of Abdominal Obesity on Specific Biomarkers and its Role in Metabolic Syndrome

Fiona O'Dwyer¹ Dr O Mac Ananey¹ ¹Technological University Dublin

cm (women))

Along with any two or

more of the following:

≥ 1.7 mmol/L

< 1.03 mmol/L in

< 1.29 mmol/L in

systolic BP ≥ 130 or

(FPG) ≥ 5.6 mmol/L

diastolic BP ≥ 85

females

mmHg

Person must

have:

Raised

Triglycerides

Cholesterol

Raised Blood

Pressure

Raised Fasting

Plasma

Glucose

Reduced HDL males

Introduction

- Metabolic syndrome (MetS) is a range of obesogenic, metabolic, and/or cardiovascular abnormalities.
- Global prevalence: 11.9% 49%, influenced by geography, environment, population & diagnostic criteria^{1,2}
- Abdominal obesity precedes risk factors, defined by waist circumference (WC) (>102cm males, >88cm females) or by having a waist-to-hip ratio (WHR) (>0.90 for males and >0.85 for females)³
- WC influenced by height, age, and ethnicity, making a singular cut-off challenging
- Waist-to-height ratio (WtHR) is an alternative indicator with a universal cut-off (>0.5)4.
- Visceral adipocyte hypertrophy → increased leptin, decreased adiponectin → an imbalanced leptin/adiponectin (L/A) ratio and elevated CRP levels

Aim

Examine the relationship between obesogenic risk factors in a subclinical population, in individuals with and without MetS IDF, specifically exploring the relationship between the indices of MetS (IDF) and anthropometric measures of abdominal obesity with the specific biomarkers, leptin, adiponectin, L/A ratio and hs-CRP. The secondary aim of the present study is to examine the overlap of MetS diagnosis using the three criteria: IDF, WHO and NCEP.

Methods

198 participants (92 M, 106 F).

- Inclusion → non-smokers, moderate alcohol intake.
- Exclusion → U29, specific medical conditions, and medication use.
- Anthropometric, hemodynamic, glucose & lipid profiles analysed
- hs-CRP, leptin and Adiponectin → Fasting venous samples
- Obesity, abnormal WHR and body fat % → WHO⁵
- Abnormal WC → HSE⁶
 - Abnormal WtHR → The British Heart Foundation⁷

SPSS – Non parametric T-Test, Chi Square, Univariate and ROC Curve analyses were used to examine the data. Data was presented as mean with standard deviation.

NCEP

Presence of any three or more

of the following:

> 1.7 mmol/L

< 1.0 mmol/L in

< 1.3 mmol/L in

> 130/85 mmHg

> 102 cm (men)

women

or drug

or > 88 cm

(women)

Altered Blood > 5.6 mmol/L

Raised

Triglycerides

Cholesterol

Raised Blood

Pressure

Glucose

Elevated Waist

Circumference

Reduced HDL men

Results

Mean (SD) subject characteristics of the Healthy and Metabolic Syndrome (IDF) cohorts

Characteristics	Healthy N=171	Metabolic Syndrome (IDF) N=24		
<u>Gender</u>				
Male	77	12		
Female	94	12		
Age (years)	41.5(± 9.7)	41.3 (± 6.5)		
Physical Characteristics				
Waist Circumference (cm)	86.0 (± 11.2)	103.1 (± 11.1) **		
Waist to Height Ratio	.506 (± 0.06)	.597 (± 0.06) **		
Body Fat Percentage (%)	27.0 (± 8.4)	33.6 (± 9.1) **		
Haemodynamic Profile				
Blood Pressure Systolic (mmHg)	122 (± 12)	138 (± 9) **		
Blood Pressure Diastolic (mmHg)	73 (± 8)	80 (± 7) **		
<u>Lipid Profile</u>				
Total Cholesterol (mmol/L)	4.8 (± 0.8)	4.7 (± 0.7)		
Glucose Profile				
Glucose Pre (mmol/L)	5.0 (± 0.4)	5.3 (± 0.6) *		
<u>Biomarkers</u>				
hs-CRP (mg/L)	1.7 (± 2.4)	3.6 (± 5.4)		
Leptin (pg/mL)	13349.0 (±9940.7)	25186.5 (± 23663.6)		
Adiponectin (ng/mL)	6620.1 (± 3925.0)	5133.6 (± 3449.0)		
Leptin/Adiponectin Ratio	3.3 (± 6.5)	6.8 (± 7.8) *		

Univariate analysis between anthropometrical abdominal obesity markers and Leptin, Adiponectin, L/A ratio and hs-CRP.

	Leptin		Adiponectin		L: A Ratio		hs-CRP	
	<u>Healthy</u>	MS IDF	<u>Healthy</u>	MS IDF	<u>Healthy</u>	MS IDF	<u>Healthy</u>	MS IDF
WC	0.12	0.11	-0.35**	-0.67**	0.30**	0.60*	0.13	0.47*
BMI	0.16	0.29	-0.29**	-0.58*	0.31**	0.64**	0.15	0.69**
WHR	0.04	-0.19	-0.28**	-0.43	0.20*	0.11	0.14	-0.18
WtHR	0.28**	0.32	-0.33**	-0.69**	0.44**	0.70**	0.17*	0.76**
Trunk Fat	0.41**	0.42	-0.06	-0.20	0.42**	0.48	0.18*	0.52*

ROC Curve of WC, WtHR, WHR and BMI to assess the validity of anthropometrical abdominal obesity markers in diagnosing MS (IDF)

Diagnostic criteria for MetS as classified by the International Diabetes Federation,

Word Health Organisation and the National Cholesterol Education Program

Central obesity (Waist Presence of insulin resistance or

> 94 cm (men) or > 80 glucose > 6.1 mmol/L, 2 h glucose

Raised

Triglycerides

Raised Blood

Pressure

Elevated

Ratio

Reduced HDL men

WHO

> 7.8 mmol

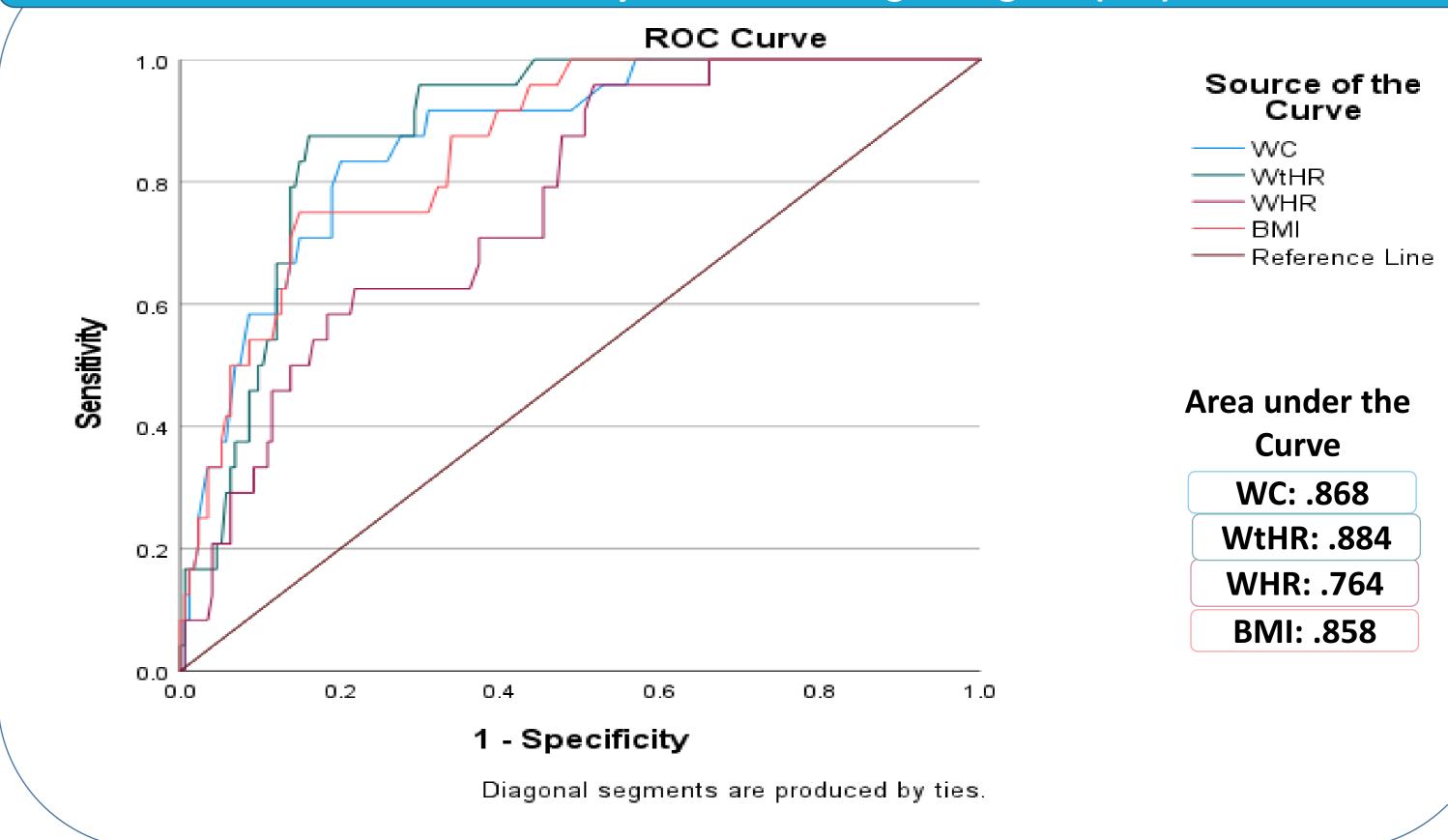
Along with any two or more of

the following:

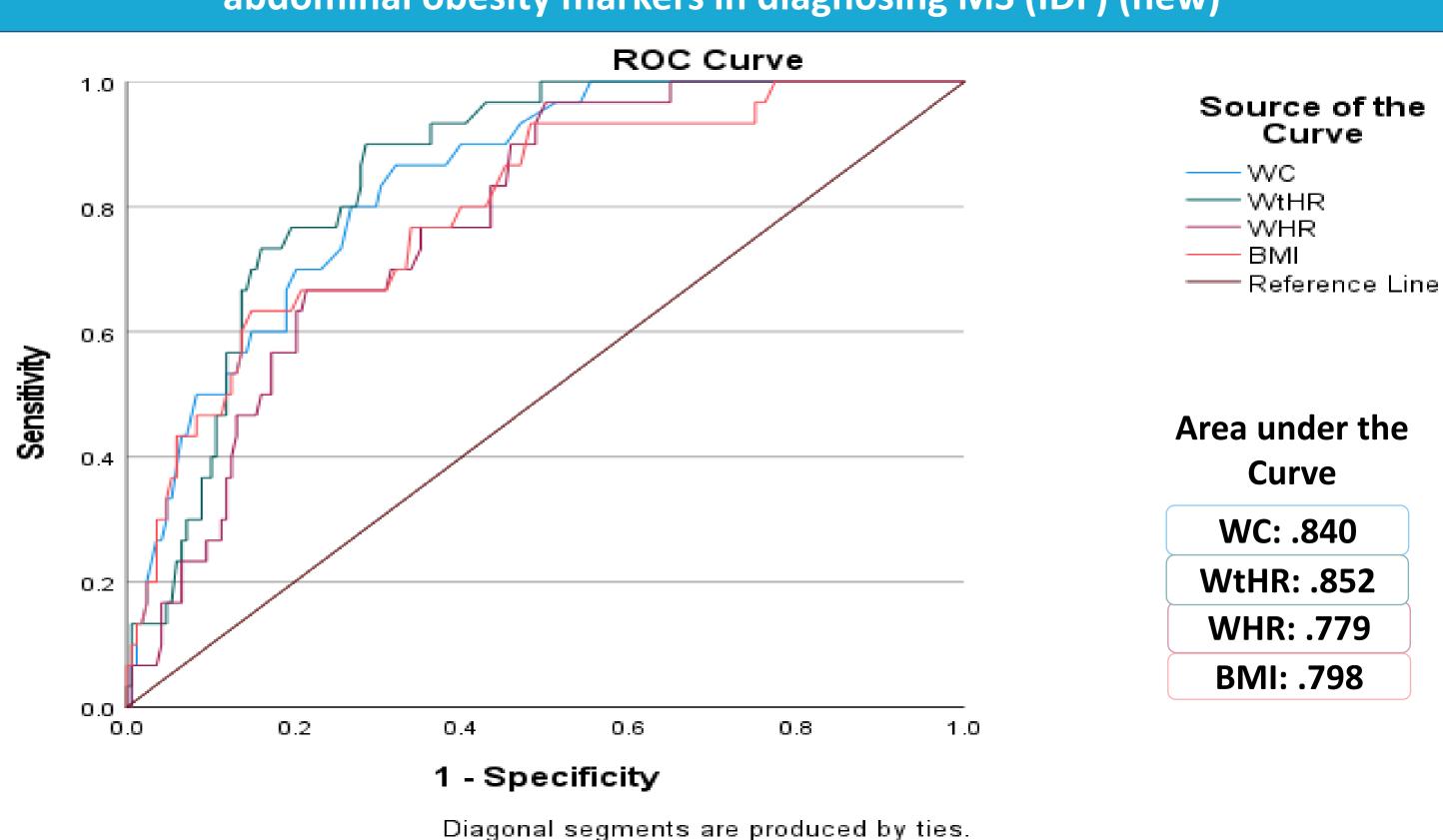
Cholesterol < 1.0 mmol/L in

women

> 1.7 mmol/L


< 0.9 mmol/L in

> 140/90 mmHg


> 0.85 (women)

> 0.9 (men)

Waist to Hip or BMI > 30 kg/m²

ROC Curve of WC, WtHR, WHR and BMI to assess the validity of anthropometrical abdominal obesity markers in diagnosing MS (IDF) (new)

Discussion

- The present study highlights the potential of using the L/A Ratio and WtHR, to identify individuals at a higher risk of developing MetS.
- Previous studies suggest that the L/A ratio is a superior biomarker for MetS
- Universally applicable threshold value is underreported due to conflicting cut off values across sex, age groups, and race8.
- WtHR is recognised as a more accurate MetS marker than WC, BMI, and visceral fat measures⁹ • A novel predictive score, was proposed, that combines the L/A Ratio and WtHR to aid in identifying MetS in the general population.
- Strengths → focus on a subclinical cohort. Limitations → missing data for some participants and biases introduced during the recruitment process/

Conclusion

In summary, the present findings suggest that WtHR and L/A ratio are useful diagnostic tools for identifying MetS in the subclinical population. The present data strongly supports the use of WtHR as the primary measure for diagnosing abdominal obesity and MetS, with potential value in early detection, however, larger studies are needed to confirm their applicability for a general population.

References

- Iqbal Hydrie, M. Z., Shera, A. S., Fawwad, A., Basit, A., & Hussain, A. (2009). Prevalence of metabolic syndrome in urban Pakistan (Karachi): comparison of newly proposed International Diabetes Federation and modified Adult Treatment Panel III criteria. Metabolic Syndrome and Related Disorders,, 7(2), 119–124. https://doi.org/10.1089/MET.2008.0055
- Kaur J. A Comprehensive Review on Metabolic Syndrome. Cardiol Res Pract 2014; 2014. doi:10.1155/2014/943162
- Geneva. Waist Circumference and Waist-Hip Ratio: Report of a WHO Expert Consultation.
- www.who.int (accessed 25 Apr2023).
- Managing your weight reduce your risk of heart conditions BHF. (2023).
- Body mass index (BMI). https://www.who.int/data/gho/data/themes/topics/topicdetails/GHO/body-mass-index
- HSE.ie. Obesity. Retrieved May 10, 2023, from https://www2.hse.ie/conditions/obesity/diagnosis/#waist-circumference
- Managing your weight reduce your risk of heart conditions BHF. (2023). https://www.bhf.org.uk/informationsupport/support/healthy-living/managing-your-weight
- Sigit FS, Trompet S, Tahapary DL, Sartono E, Willems van Dijk K, Yazdanbakhsh M et al. The a ssociations of leptin and adiponectin with the metabolic ssyndrome in an Indonesian and a Dutch population. Nutrition, Metabolism and Cardiovascular Diseases 2021; 31: 2426–2435.
- Ashwell Margaret, Gibson Sigrid. A proposal for a primary screening tool: 'Keep your waist circumference to less than half your height'. MC Medicine 2014; 12.